Finnish Institute of Occupational Health

Lithium-ion battery's life cycle: safety risks and risk management at workplaces

FIOH: Pia Perttula, Arto Säämänen, Jarmo Vorne, Anneli Kangas, Tiina Santonen, Henriikka Kannisto, Eero Lantto, Timi Lannetta

GAIKER: Isabel Rodríguez Llopis, Leire Barruetabeña, Leire García, Sergio Valbuena

IN COOPERATION WITH

Työsuojelurahasto Arbetarskyddsfonden The Finnish Work Environment Fund

MEMBER OF BASQUE RESEARCH & TECHNOLOGY ALLIANCE

About the project

The objective of the study is

- To determine the Li-ion battery's value chain
- To specify the risks and potential impact for health, safety and environment
- Produce guidance and good practices for improving occupational safety

Funding

Finnish Work Environment Fund, FIOH

OSALAN, GAIKER

Budget

350 000€

Co-operation

Finnish Institute of Occupational Health

GAIKER

Workplaces from Finland and Spain

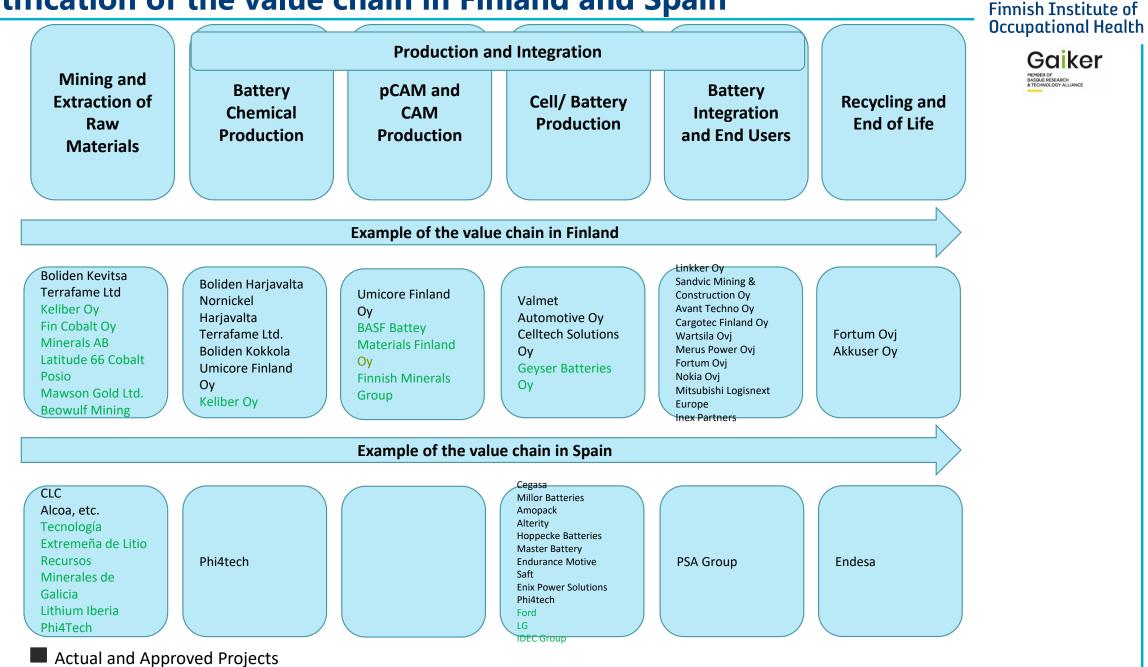
Structure of the project

WP1 EHS management, Framing the issue

- Identification of the operators in the overall life cycle of Li-Ion batteries
- Description of the occupational safety risk management
- Identification of key materials in the production of Li-Ion batteries
- Overall picture of the Li-Ion batteries

WP2 Life cycle assessment

- Determination of the material flows over the life cycle
- Life Cycle Assessment of Li-Ion batteries

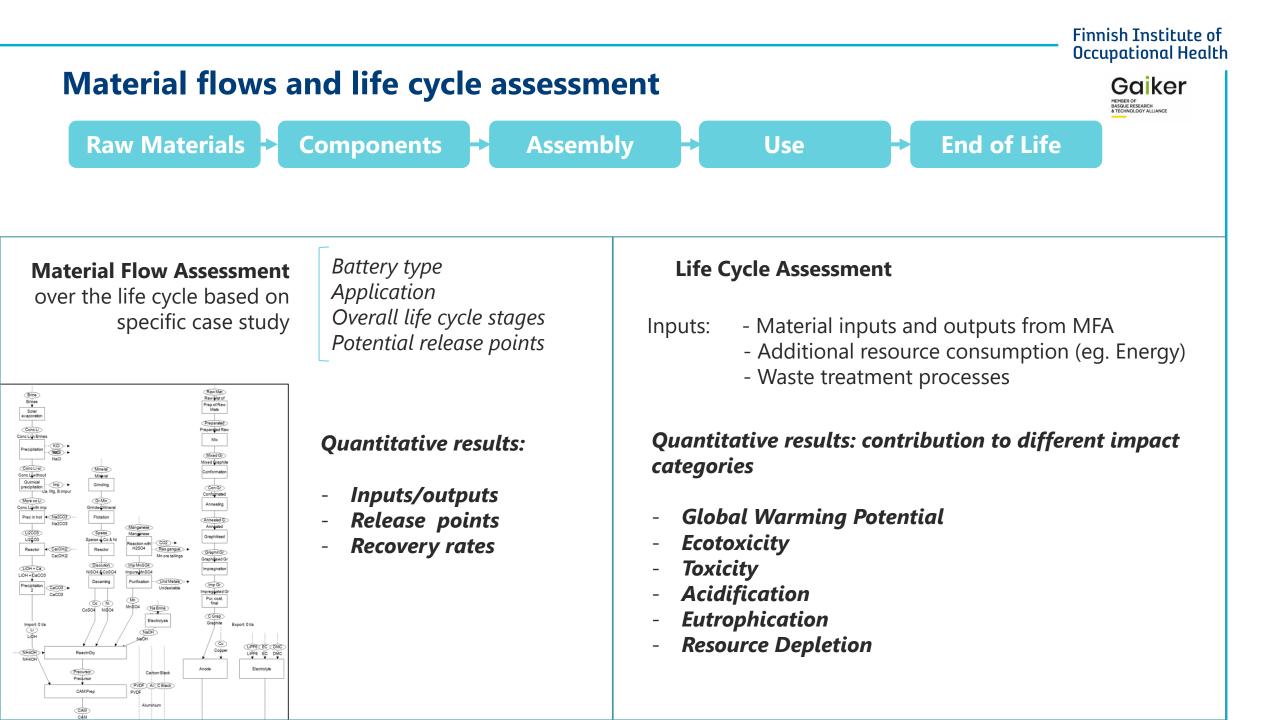

WP3 Critical occupational risk factors

- Hazard assessment of materials
- Assessment of workers exposure to chemicals
- Safety risk assessment

WP4 Performance in value chain

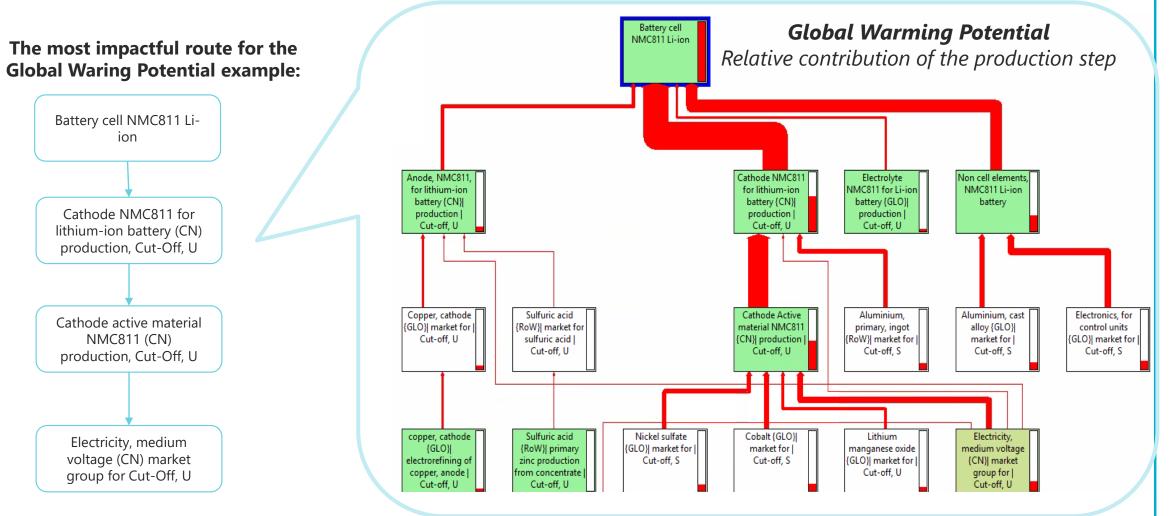
- Development of a guidance and best practices for occupational safety along the life cycle of Li-Ion batteries
- Publications and events

Identification of the value chain in Finland and Spain


Proposed/thought Projects

Finnish Institute of Occupational Health

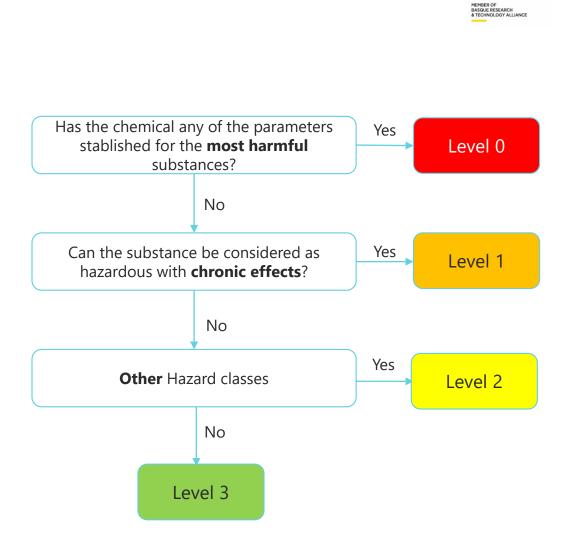
Identification and selection of key materials


Cathode	Advantages	Disadvantages			
NMC-811	Higher specific capacity (25	It still has Co			
	% higher than NMC-111)	Surface reactivity			
	Higher electronic				
	conductivity and ionic				
	diffusivity				
	Lower cost				
Graphene for LIBs, SIBs and	High electrical and thermal	5			
Lis	conductivities	increase potential industrial			
	Unique electronic structure	applications			
	Large surface area				
CNT	Increased electronic	The growing use has raised			
	conductivity,	concerns about their			
	charge/discharge rate, and				
	higher structural flexibility	health and the environment			
	High chemical resistant and				
	low flammability				

Anode	Advantages	Disadvantages			
LTO	Improved safety "zero strain"	Significantly lower energy density due to its halved specific capacity comparing with graphite, and the reduced voltage windows of the cell			
		Low intrinsic electronic conductivity and low Li+ diffusion coefficient and therefore performs poorly at high rates			
Graphene for LIBs, SIBs and Lis	High electrical and thermal conductivities Unique electronic structure Large surface area	Needs more investigation to increase potential industrial applications			
Graphite	Avoid the short-circuiting	Poor rate capability			
	due to the dendrites that Lithium metal can form and that can start a thermal run-away reaction	Lithium dendrite problems upon overchanging			
Electro	lyte salts				
Lithium he	xafluorophosphate (LiPF ₆)				
Solven					
Dimethyl carbonate (DMC)					
Ethyl meth	Ethyl methyl carbonate (EMC)				
Diethyl car	Diethyl carbonate (DEC)				
	arbonate (EC)				
Additiv					
Fluoroethy	lene carbonate (FEC)				
Vinylene c	arbonate (VC)				

Life cycle assessment: Impact on global warming potential

- Production phase: key processes modelled, and Impact Category indicators calculated
- End of Life phase: under development
- Use phase (including accidental releases): next step



Hazard assessment of materials

- Classification of chemical hazards using the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
- Three hazard levels have been considered:
 - Most harmful substances (level 0):
 - Carcinogenic (1A-1B).
 - Mutagenic (1A-1B)
 - Reproductive toxicity (1A and 1B).
 - Respiratory sensitizer (1).
 - Hazardous substances with chronic effects. Level 1
 - Other Hazard classes. Level 2

if the substance has no GHS hazard statements or has few hazard statements with a low concern within it.

• No hazard. Level 3

Gaiker

zard assessm	nent of mate	rials			Gaiker
Mining and extraction of materials	Battery Chemical Production	pCam and Cam Production	Cell/Battery production	Battery integration and end users	Recycling and end of Life
Cobalt Nickel	Nickel Sulfate Nickel Hydroxide Cobalt Hydroxide Cobalt sulphate	Ni-Mn-Co (8:1:1) Ammonium Hydroxide	Ni-Mn-Co (8:1:1) Carbon Black Lithium Hexafluorophosphate	Hydrogen Fluoride	Cobalt Nickel
Manganese Lithium Aluminum	Ni-Mn-Co (1:1:1) Hydrogen peroxide Manganese Sulphate Lithium Hydroxide Sulfuric Acid Sodium Hydroxide	Lithium Hydroxide Lithium Carbonate Sodium Sulphate	N-Methyl-2- pyrrolidine EC DMC PVDF	Carbon Monoxide Methane Ethylene Lithium Hydroxide Hydrogen	LIF PF _s DMC EC
Copper	Sodium Sulphate Manganese Oxide Trimanganese Tetraoxide Manganese Hydroxide Lithium Sulphate	Graphite	Aluminum Graphite Copper PP PE Steel PET		PCI ₅
		Value chain of	LIBs		

Hazard assessment of materials

Finnish Institute of Occupational Health

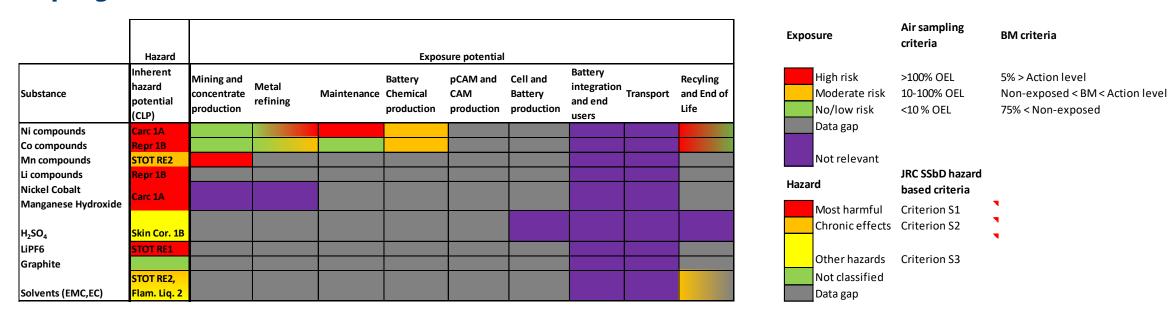
Hazard assessment of materials, Gas emissions in accidents

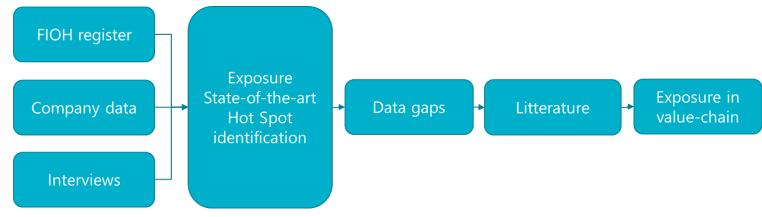
Finnish Institute of

temperature. • When an accident occurs the Battery releases different gases. Stage I Stage II and III Stage IV Gas emissions CO₂ -CF-, HF, -CH-CF-, H2O, CO2 Acetylene black H2O, C2H4, C2H6, H2, CH3OH, C3H6, CO2, PF5, HF, POF3, Binder C4H8O3,C3H4O3 PVDF ithium salts Solvent 285 600 780 68

• The most typical accident is related with

Tem (°C)


	Hazard via inhalation route	Hazard via dermal ro	ute Hazard via route		
HF	Systemic effects: - DNEL = 0,03 mg/m ³ Local effects: - DNEL = 0,2 mg/m ³ (long term exp) - DNEL = 1,25 mg/m ³	Systemic effetcts:Systemic effects:- no-threshold effect Local- DNEL = 0,01effects:mg/kg bw/day- no-threshold effect		01	
LiOH	Systemic effects: - DNEL = 6,21 mg/m ³ (long term exp) - No hazard (acute/short term exp) Local effects: - Low hazard	Systemic effects: - DNEL = 41,35 mg/kg bw (long term exp) - No hazard (acute/short - exp) Local effects: - Medium hazard	mg/kg bw/c	13 - Medium lay hazard exp) 2,4 lay	
	Environmental Occupational Exposure Limit Values in Spain				
CH_4	1000 ppm				
C_2H_4	200 ppm				
	OSHA PEL 8-hour TWA (ST) STEL (C) Ceiling Peak	NIOSH REL Up to 10-hour TWA (ST) STEL (C) Ceiling	ACGIH TLV© 8-hour TWA (ST) STEL (C) Ceiling	CAL/OSHA PEL 8-hour TWA (ST) STEL (C) Ceiling Peak	
СО	PEL-TWA: 50 ppm (55 mg/m ³)	REL-TWA: 35 ppm (40 mg/m ³) REL-C: 200 ppm (229 mg/m ³)	TLV-TWA: 25 ppm	PEL-TWA: 25 ppm (29 mg/m ³) PEL-STEL: 200 ppm	


PF5 is rather short lived. The toxicity of HF and the derivate hydrofluoric acid is well known while there is no toxicity data available for POF₃, which is a reactive intermediate that will either react with other organic materials or with water finally generating HF. Judging from its chlorine analogy POCl₃/HCl, **POF₃ may even be more toxic than HF** (Larsson, Andersson, Blomqvist, & Mellander, 2017).

Finnish Institute of Occupational Health

Gaiker BASQUE RESEARCH & TECHNOLOGY ALLIANCE

Worker exposure to chemicals in value chain (in progress,...)

Safety risk assessment in value chain (in progress...)

	Mining	Refining and chemical production	Battery integration	End users (forklift)	Transportat ion	Recycling and End of life
Risk assessment (batteries, battery chemicals)						
Safety observation (batteries, battery chemicals)						
Communication, safety co-operation in the value chain						
Accidents						
Preparedness, competence (batteries, battery chemicals)						

high risk
moderate risk
low/no risk
data gap

Safety management

Interviews (30 in Finland and 3 in Spain)

- Diverse safety management practices
- Long traditions for risk assessment
- Few near-misses concernig Li-ion batteries or battery chemicals
- Need for preparedness is recognized, information is needed
- Safety information follows the product and materials
- Co-operation is ongoing with fire and rescue department
- Communication requires more attention between value chain partners

Next steps

- 1) Complete the data gathering
- 2) Finalize MFA and LCA and hazard potential for End of Life
- 3) Model impacts from potential accidents in LCA
- 4) Visit the target companies
- 5) Join the data
- 6) Prepare the risk table
- 7) Prepare the guidance
- 8) Dissemination

