

A framework for the development of Human-Centred Safety Crowd-Sensitive Indicators in Enterprises (H(CS)²I)

6th SAF€RA Symposium Safety in the new economy and energy transition Rome, 19th-20th May, 2022

Antonio De Nicola (ENEA, Italy)

H(CS)²I Project

- International project funded by INAIL (IT) and IOSH (UK) under the SAF€RA 2018 Funding Scheme
- Call Topic: T2 Measuring and monitoring safety performance
- Project duration: July 2019 June 2022
- Overall budget: € 259,500.00

H(CS)²I Partners and Project Team

Antonio De Nicola

Maria Luisa Villani

ENEN

John Watt

Mark Sujan

Riccardo Patriarca

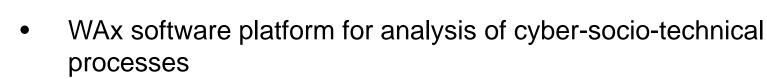
Andrea Falegnami

Francesco Costantino

Giulio Di Gravio

Process Safety

- Process safety indicators are mostly based on accident causation models (i.e., on how we assume accidents happen).
- New paradigms suggest that accidents in modern, complex sociotechnical systems can arise from everyday performance variability and from unanticipated and dysfunctional interactions


H(CS)²I Project Goals

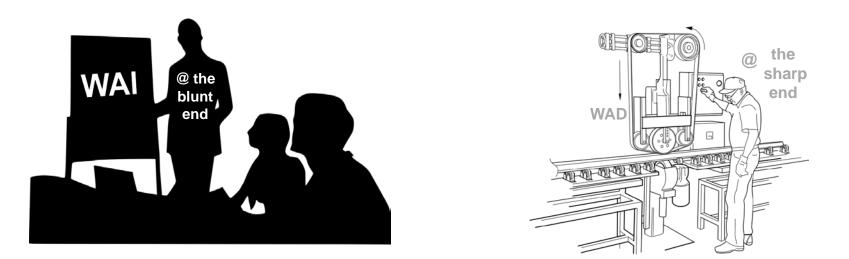
- The challenge is to identify safety indicators efficiently based on this newer type of thinking.
- This project set out to:
 - Define an approach for the development of safety indicators based on Resilience Engineering thinking.
 - Partly automate this approach to enhance its efficiency and quality.
 - Test the feasibility of the approach in an industrial case study.

H(CS)²I Framework

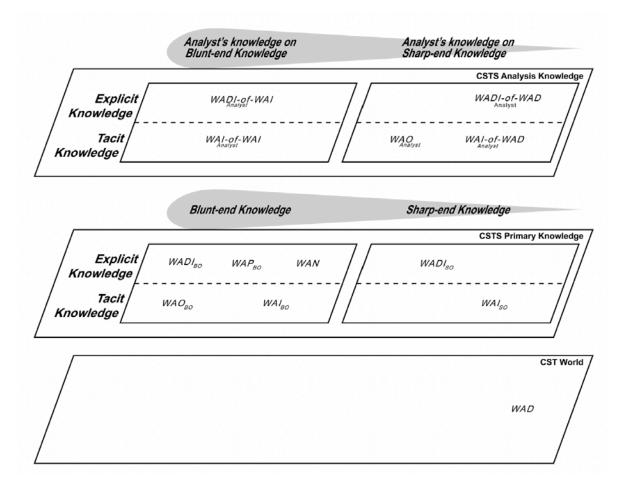
• WAx (Work-As-x) conceptual framework

Step 1

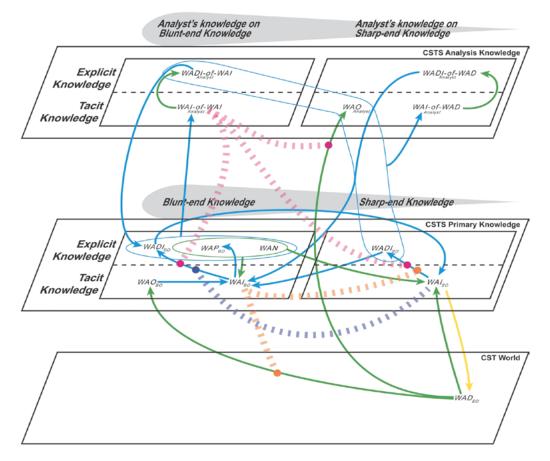
- 2 Pilots
 - "Big pharma" industry (UK)
 - An industry in the aluminium sector (IT)



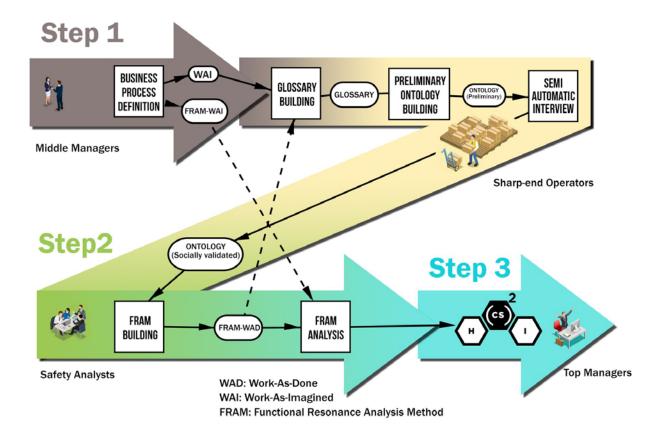
Multi-perspective varieties of work


Work-As-Done (WAD) (at the Sharp-End)

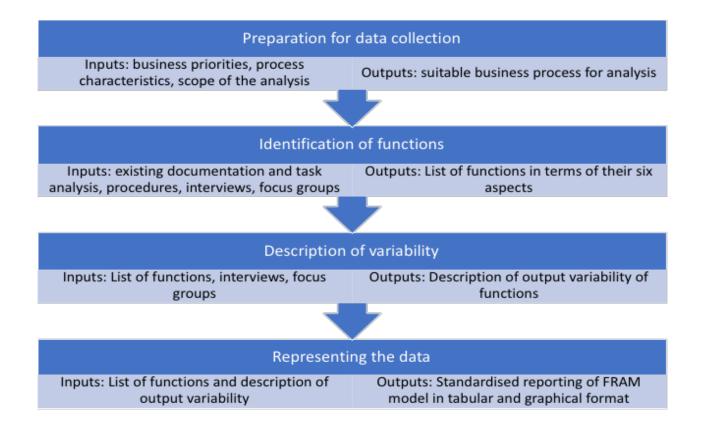
Moppett, I.K., Shorrock, S.T., 2018. **Working out wrong-side blocks**. Anaesthesia 73, 407–420. https://doi.org/10.1111/anae.14165.


The WAx Conceptual Framework: Structure

R. Patriarca, A. Falegnami, F. Costantino, G. Di Gravio, A. De Nicola, M. L. Villani. WAx: An integrated conceptual framework for the analysis of cyber-socio-technical systems. Safety Science, vol. 136, April 2021, 105-142, https://doi.org/10.1016/j.ssci.2020.105142

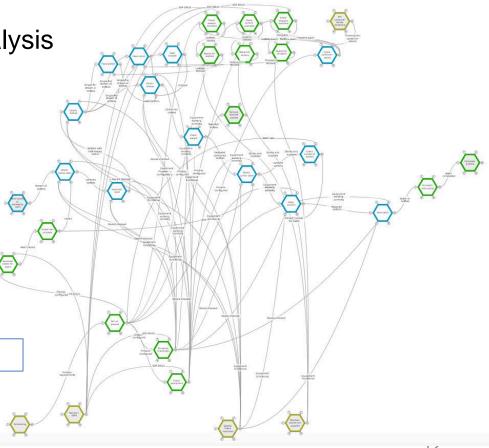

The WAx Conceptual Framework: Dynamics

R. Patriarca, A. Falegnami, F. Costantino, G. Di Gravio, A. De Nicola, M. L. Villani. WAx: An integrated conceptual framework for the analysis of cyber-socio-technical systems. Safety Science, vol. 136, April 2021, 105-142, https://doi.org/10.1016/j.ssci.2020.105142



H(CS)²I Framework

Collecting knowledge in an enterprise: Work-As-Imagined (WAI)

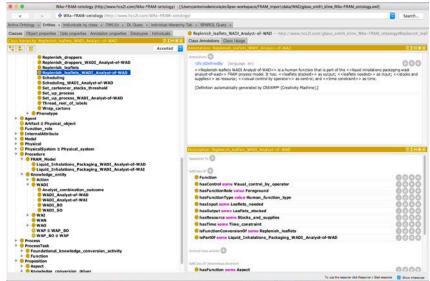

Packaging of liquid inhalation product

FRAM (Functional Resonance Analysis Method) **process instance**

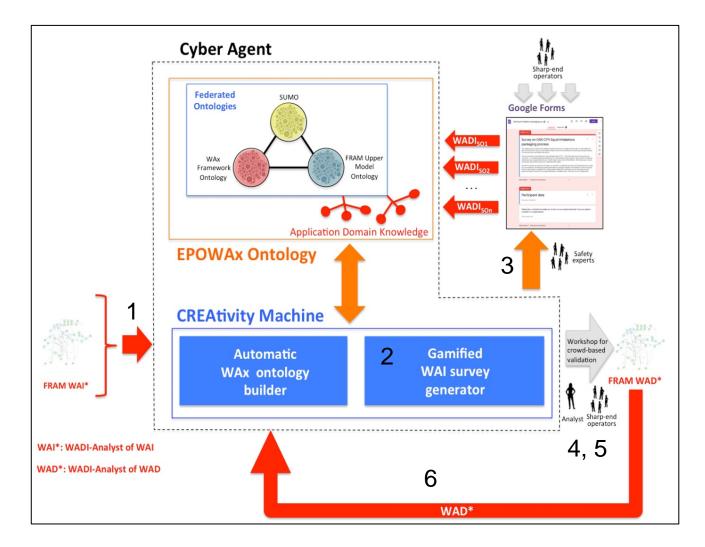
Functions by type:

- Automated
- Human
- Organisational

Hollnagel, E., 2012. **FRAM: The Functional Resonance Analysis Method** – Modelling Complex Socio-technical Systems. Ashgate.


Collecting knowledge in an enterprise: Work-As-Done (WAD)

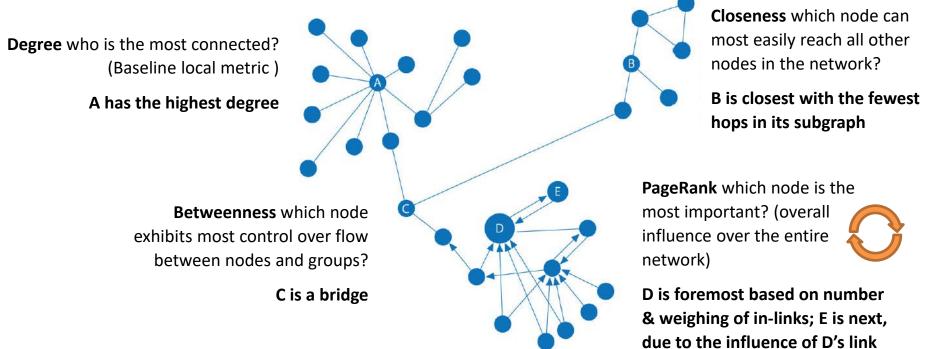
- 1. Automatic population of the EPOWAx ontology from FRAM WAI
- 2. Partially automated creation of the gamified WAI survey
- 3. Sharp-end operators respond to the survey
- 4. Workshop for "crowd-based validation"
- 5. Analyst designs FRAM WAD
- 6. Automatic population of the EPOWAx ontology from FRAM WAD


The EPOWAx Ontology

- An ontology is a formal specification of a shared conceptualization [Gruber93, Borst97]
- **EPOWAx**: Enterprise Production Ontology based on the WAx framework
- Based on the EPOWAx Upper Ontology model, which consists of:
 - The Suggested Upper Merged
 Ontology (SUMO)
 - The WAx Framework Ontology
 - The FRAM Upper Model (FUM) ontology

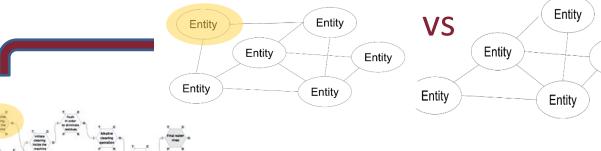
Creation of the FRAM WAD: Overall Approach

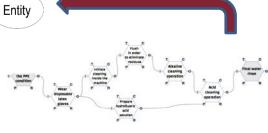
H(CS)²I indicators


H(CS)²I indicators

Topological H(CS)²I indicators Semantic H(CS)²I indicators

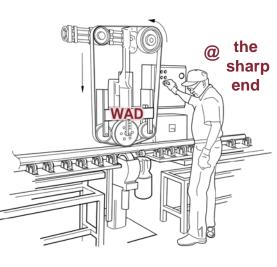
Topological H(CS)²I indicators


Leveraging network representation of processes to identify the key nodes



Id	Function	Туре	Degree	Closeness	Betweenness	PageRank	Authority	Hub
1	Feed bottles to packaging room	Technological	6	4.17582E+14	30	2.07589E+14	9.44725E+14	1.43319E+14

Semantic H(CS)²I indicators



These indicators leverage information embedded in different varieties of work (WAx).

Main Case Study					
General	0.8714				
Control	0.8720				
Input	0.9154				
Output	0.9162				
Precondition	0.9235				
Resource	0.8462				
Time	0.8850				
Human	0.8762				
Technological	1.0000				
Organizational	0.9888				

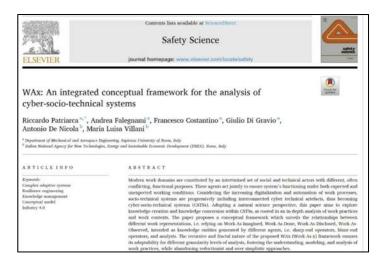
Defining H(CS)²I Indicators: Steps

STEP 1

 Produce topological and semantic representations for each WAx entity

STEP 2

 Calculate absolute and relative network prominence indices for each WAx variety

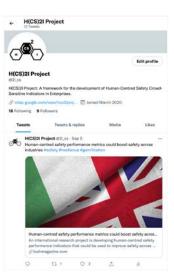

STEP 3

- Define the context-specific KPIs relative to the identified functions
 STEP 4
- Calculate semantic similarity

Publications & Deliverables

- 1 journal paper
- 8 conference papers (Best Paper Award @ IESA-2022 Conference)
- 3 Workshop papers
- 2 Newsletters
- 14 project deliverables

R. Patriarca, A. Falegnami, F. Costantino, G. Di Gravio, A. De Nicola, M. L. Villani. **WAx: An integrated conceptual framework for the analysis of cyber-socio-technical systems.** Safety Science, vol. 136, April 2021, 105-142, https://doi.org/10.1016/j.ssci.2020.105142


Websites & Social Media

#resilience #safety #manufacturing Riccardo Patriarca Mark Sujan Maria Luisa Villani John Watt Paolo Bragatto Silvia Ansaldi Patrizia Agnello Francesco Costantino Andrea Falegnami https://inkd.in/d-wbm&R

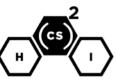
Websites

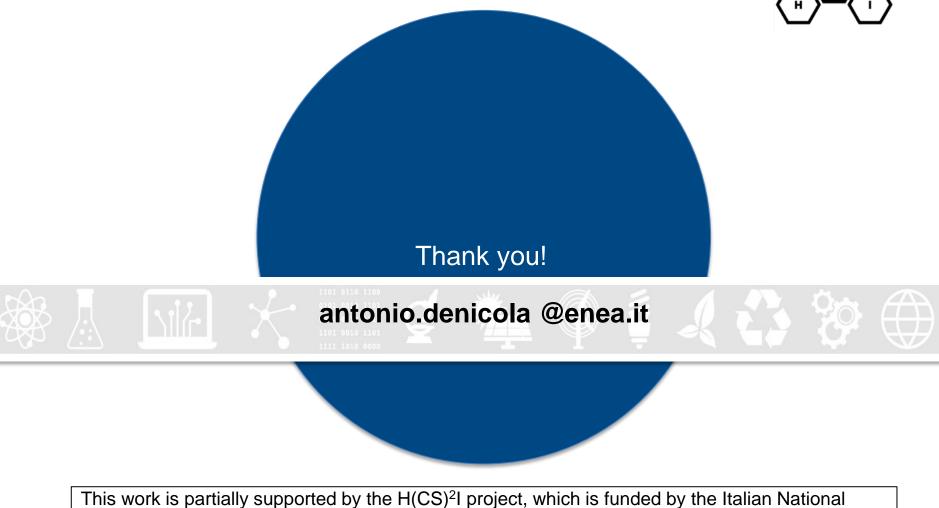
https://projects.safera.eu/project/24

https://sites.google.com/view/hcs2iproject/

LinkedIn

https://www.linkedin.com/groups/8910868/


Twitter


https://twitter.com/2i_cs

ResearchGate

https://www.researchgate.net/project/A-framework-for-thedevelopment-of-Human-Centred-Safety-Crowd-Sensitive-Indicators-in-Enterprises-HCS2I

This work is partially supported by the H(CS)²I project, which is funded by the Italian National Institute for Insurance against Accidents at Work (INAIL) under the 2018 SAF€RA EU funding scheme.

