Finnish Institute of Occupational Health

Hazard characterization of graphene-based nanomaterials in energy production and storage

Julia Catalán, PhD, senior researcher

THE PROJECT IN A NUTSHELL

Duration of the project: 2.5 years

Starting date: 01.01.2021

Partners:

- University of Trieste (UniTs)
- The Finnish Institute of Occupational Health (FIOH; Coordinator)

Budget: 348 k€

Funded by:

- The Finnish Work Environment Fund (FWEF)
- The Italian Workers Compensation Authority (INAIL)
- UniTs
- FIOH

Työsuojelurahasto Arbetarskyddsfonden The Finnish Work Environment Fund

ISTITUTO NAZIONALE PER L'ASSICURAZIONE CONTRO GLI INFORTUNI SUL LAVORO

Finnish Institute of Occupational Health

THE ADVISORY COMMITTEE

Companies

- Amaia Zurutuza (Graphenea)
- Martin Lohe (Sixonia-Tech)
- Julio Gómez (Avanzare)
- Santiago Blanco de la Torre (Grupo Antolín)

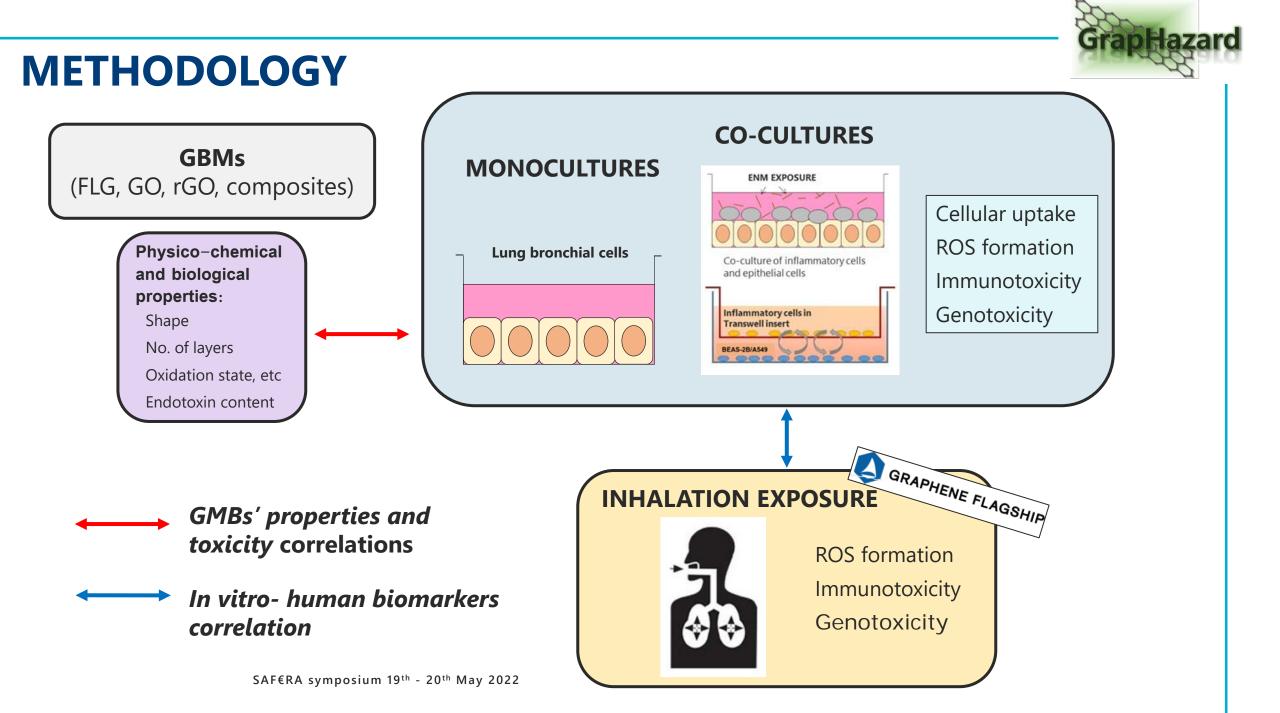
Funding organizations

- Paolo Bragatto (INAIL)
- Mikael Saarinen (FWEF)
- Carita Aschan (FIOH)

AIM OF THE PROJECT

The overall aim of this project is **to identify and characterize the toxicological hazard that graphenebased nanomaterials (GBMs) used in energy production and storage may posed at the occupational level**

OBJECTIVES OF THE PROJECT


- 1. Adapt toxicity test guidelines (TGs) for advanced materials and apply them for GBMs testing
 - Employing the latest principles and procedures developed within the OECD Manufactured Nanomaterials Working Party (MNMWP) programme
 - Comparing *in vitro* results with the human biomonitoring data on the same toxicological endpoints that will be obtained by FIOH within the EU Graphene Flagship programme

2. Contribute to elucidating the mechanisms of action at the basis of human toxic responses after inhalation exposure to GBMs

• Using *in vitro* approaches able to differentiate between primary (interaction with target cellular components) and secondary (mediated by an inflammatory response) mechanisms of actions

3. Assess how the physico-chemical properties of GBMs can affect their toxicity

 Evaluating GBMs with different physico-chemical properties for their *in vitro* effects on targeted cells → Safe(r)-by-Design

PLANNED SCHEDULE

Year	1									2						3														
Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
T1																										 				
T2																														
T3		, , , , ,		<u>.</u>			; 			<u></u>																				
T4		 	, , , , ,			, , , , , , ,	¦ 																							
T5		 																												
T6							; ;																							
T7																														

T1: Characterization of GBMs

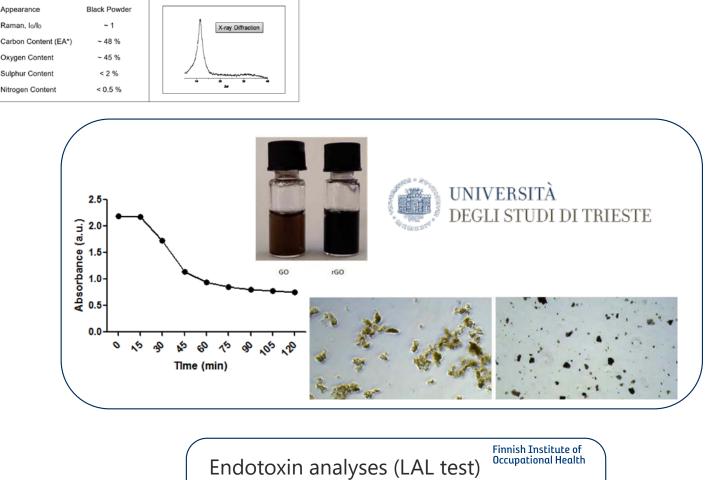
T2: Adjustment of test protocols for assessing GBMs

T3: *In vitro* toxicity assessment of primary effects of GBMs

T4: In vitro toxicity assessment of secondary effects of GBMs

T5: Establishing correlations between physico-chemical properties of GBMs and their *in vitro* toxicity

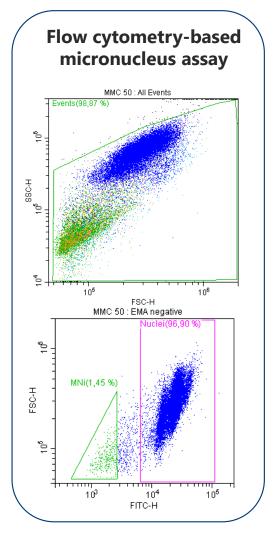
T6: Correlations between *in vitro* toxicity data and human data from workers exposed to GBMs


T7: Dissemination of the results

GRAPHENEA AVANZARE SIXONIA-TECH GRUPO ANTOLÍN

GBMs MATERIALS

- Graphene oxide (GO) vs. rGO
- Powdered GO *vs.* stable GO dispersion
- rGO with different oxidation status
- rGO with different flakes dimension and number of layers
- Different functionalized rGO

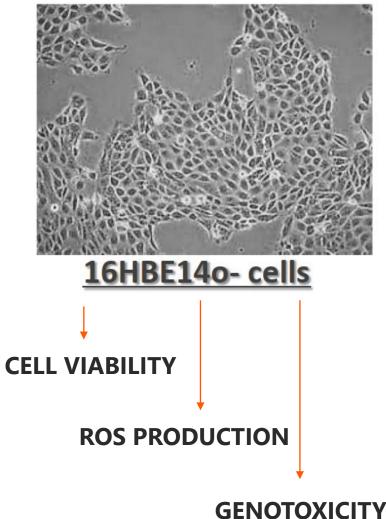

INTERFERENCE WITH THE MATERIALS!!

T2. ADJUSMENT OF ASSAYS

Genotoxicity assays

Assay	Detected event	Pros	Cons	Decision	
Micronucleus	Chromosome	Ongoing adaptation to NMs (OECD WPNM)	GBMs may interfere with MNi scoring	✓	
	damage	Used in the co- culture system	with why sconing		
Mammalian gene mutation	Gene mutation	Ongoing adaptation to NMs (RiskGone)	Unclear whether applicable to 16HBE cells	Х	
			Time-consuming		
	DNA damage (mainly	Suitable for MNs	No validated TG		
Comet	single DNA strand breaks)	Oxidative damage can be detected	Possible interference with GBMs	\checkmark	
	DNA damage		No validated TG		
γ-Η2ΑΧ	(double DNA strand breaks)	More relevant type of DNA damage	Already covered by the MNi assay	Х	

UniTs – FIOH collaboration


Lab	Cell line	Endpoint	Aim	Hazard characterization		
FIOH/UniTs	16HBE14o- (Human bronchial epithelial cell line)	Cytotoxicity	Choosing sub-toxic or non- toxic doses			
UniTs	16HBE14o-	ROS generation	Evaluation of the oxidative stress potential	Cytotoxicity		
UniTs	16HBE14o-	Release of cytokines	Evaluation of the inflammatory potential	Oxidative stress		
FIOH	16HBE14o-	Genotoxicity (2 assays)	Evaluation of the genotoxic potential	Inflammation		
UniTs	THP-1 (human monocytic cell line)	Cytotoxicity	Choosing sub-toxic or non- toxic doses	Genotoxicity		
UniTs	THP-1	Release of cytokines	Evaluation of the inflammatory potential			
UniTs	THP-1	ROS generation	Evaluation of the oxidative stress potential	-		

Both institutions are using same cell lines, dispersion method, dose range and exposure times

Bronchial epithelial cells + macrophage-like cells \rightarrow Co-culture system (secondary toxic effects)

T3. ASSESMENT OF PRIMARY TOXIC EFFECTS

Conclusions

- rGO is more potent than GO in causing cytotoxic effects
- Powdered GO is more potent than GO stabilized in dispersion
- Unclear association with O₂ content of rGO
- Evaluated rGO did not induce DNA damage
- Some rGO are able to induce chromosome damage, although this capacity is not related to the O₂ content

ΕΝΟΤΟΧΙCITY

NEXT STEPS

T1: Characterization of GBMs

- Transmission electron microscopy analysis (size and shape) (UniTs)
- Close contact with companies to obtain characterization data (UniTs & FIOH)

T3: In vitro toxicity assessment of primary effects of GBMs

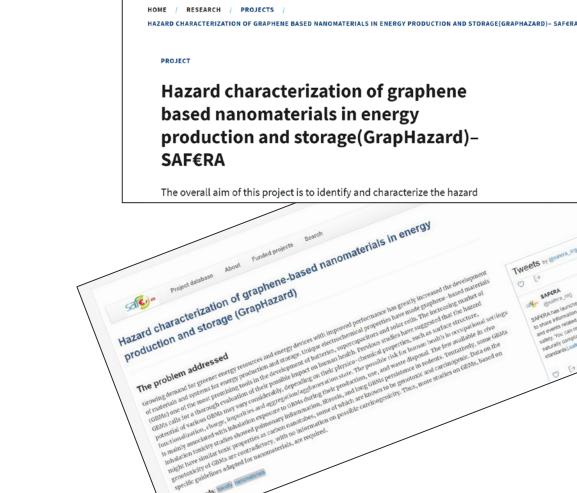
- The release of pro-inflammatory cytokines and chemokines by THP-1 cells exposed to GBMs (UniTs) will at first be evaluated to select the most inflammogenic conditions to be studied later on in the coculture system.
- Completing genotoxicity testing (FIOH)

T4: In vitro toxicity assessment of secondary effects of GBMs

 Secondary toxic effects mediated by THP-1-released cytokines and pro-inflammatory factors will be evaluated in the human bronchial epithelial cells co-cultured with GBM-exposed THP-1 cells by means of genotoxicity (FIOH) and inflammatory response (UniTs)

NEXT STEPS (II)

T5: Establishing correlations between physico-chemical properties of GBMs and their in vitro toxicity


- Data on physico-chemical characterization of GBMs obtained in Task 1 will be correlated to the toxicity data obtained in Tasks 3 and 4, to identify which physico-chemical properties could mostly affect the toxic response to inhaled GBMs.
- This information will be relevant in choosing safer materials (Safe-by-Design approaches) and it can help GBMs grouping when registering them under European regulations

T6: Correlations between in vitro toxicity data and human data from workers exposed to GBMs [FIOH (leader), UniTs] (M18-M30)

Data from human biomonitoring studies performed within the Graphene Flagship will be correlated with the toxicity data obtained in Tasks 3 and 4, to assess

- i) whether the *in vitro* settings are predictive of human response, and
- ii) the mechanisms of action operating in possible toxic responses observed in humans exposed to GBMs.

- Advertisement of GrapHazard in several websites and social media
- SAF€RA Symposium (Rome, 19-20 May 2022)
- Scientific congresses
 - "Nano-week" 2022 (Cyprus, June 2022)
 - International Congress of Toxicology (ICT2022, Maastricht, September 2022)
 - Finnish Nanosafety seminar (Helsinki, October 2022)
 - Congress of the Italian Society of Pharmacology (Rome, November 2022)
 - Congress of the Italian Society of Toxicology (Bologna, February 2023)
- Scientific publications
 - Domenech *et al.* Genotoxicity of Graphene-based materials (under revision)

Themes Research Services Training About us

Finnish Institute of

Occupational Health

■ Menu ▼ EN Q Search

PERSONNEL INVOLVED

UniTs

- Marco Pelin
- Aurelia Tubaro
- Silvio Sosa
- Cristina Ponti
- Michela Carlin
- Clara Passerino

FIOH

- Gerard Vales
- Adriana Rodríguez Garraus
- Kukka Aimonen
- Mira Hartikainen
- Satu Suhonen
- Outi Kulo (project assistant)
- Julia Catalán

• Tomi Kanerva (FIOH, Graphene Flagship)

